Weighted Lebesgue and Lorentz Norm Inequalities for the Hardy Operator
نویسندگان
چکیده
منابع مشابه
Norm inequalities for the conjugate operator in two-weighted Lebesgue spaces
* Correspondence: ksrim@sogang. ac.kr Department of Mathematics, Sogang University, Seoul 121-742, Korea Abstract In this article, first, we prove that weighted-norm inequalities for the M-harmonic conjugate operator on the unit sphere whenever the pair (u, v) of weights satisfies the Ap-condition, and uds, vds are doubling measures, where ds is the rotationinvariant positive Borel measure on t...
متن کاملWeighted Weak Type Inequalities for the Hardy Operator When
The paper studies the weighted weak type inequalities for the Hardy operator as an operator from weighted L to weighted weak L in the case p = 1. It considers two different versions of the Hardy operator and characterizes their weighted weak type inequalities when p = 1. It proves that for the classical Hardy operator, the weak type inequality is generally weaker when q < p = 1. The best consta...
متن کامل2 00 8 Hardy inequalities for weighted Dirac operator
An inequality of Hardy type is established for quadratic forms involving Dirac operator and a weight r for functions in R. The exact Hardy constant cb = cb(n) is found and generalized minimizers are given. The constant cb vanishes on a countable set of b, which extends the known case n = 2, b = 0 which corresponds to the trivial Hardy inequality in R. Analogous inequalities are proved in the ca...
متن کاملMaximal Operator and Weighted Norm Inequalities for Multilinear Singular Integrals
The analysis of multilinear singular integrals has much of its origins in several works by Coifman and Meyer in the 70’s; see for example [3]. More recently, in [4] and [5], an updated systematic treatment of multilinear singular integral operators of Calderón-Zygmund type was presented in light of some new developments. See also [6] and the references therein for a detailed description of prev...
متن کاملWeighted Inequalities for the Sawyer Two-dimensional Hardy Operator and Its Limiting Geometric Mean Operator
We consider T f = ∫ x1 0 ∫ x2 0 f (t1, t2)dt1dt2 and a corresponding geometric mean operator G f = exp(1/x1x2) ∫ x1 0 ∫ x2 0 log f (t1, t2)dt1dt2. E. T. Sawyer showed that the Hardy-type inequality ‖T f ‖Lq u ≤ C‖ f ‖Lp v could be characterized by three independent conditions on the weights. We give a simple proof of the fact that if the weight v is of product type, then in fact only one condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1984
ISSN: 0002-9947
DOI: 10.2307/1999537